
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2005; 47:825–831
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/�d.846

Performance of numerical methods on the non-unique solution
to the Riemann problem for the shallow water equations

Nikolai Andrianov∗;†

Math�ematiques Appliqu�ees de Bordeaux; Universit�e Bordeaux I; 351 cours de la Lib�eration;
33405 Talence; France

SUMMARY

For certain initial conditions, the exact solution to the Riemann problem for the shallow water equations
is not unique. We test the performance of several numerical methods on such initial data and establish
that the numerical solution can pick out di�erent exact solutions. Moreover, the numerical solution
does not necessarily converge towards the picked-out exact solution. Copyright ? 2005 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

In this work, we are concerned with the system of one-dimensional shallow water equations
(see e.g. Reference [1]), which can be written in the form

ut + f(u)x= h(u)zx (1)

with

u=



z

h

hu


 ; f(u)=




0

hu

hu2 + gh2=2


 ; h(u)=



0

0

−gh


 (2)

Here z is the bottom topography, h the water height, u the water velocity, and g is the
gravitational constant. Usually, the bottom topography is assumed to be given a priori.
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In (1), we consider z= z(x) as an additional unknown and supply a trivial equation zt =0 for
determining it.
Consider the Riemann initial data for the system (1), i.e.

u(x; 0)=

{
uL; x60

uR ; x¿0
(3)

Our interest in the Riemann problem (1), (3) is motivated by two main factors. Firstly, un-
derstanding the structure of the solution to the Riemann problem (1), (3) is essential for
constructing e�cient Godunov-type methods for system (1). Secondly, the knowledge of the
exact solution to (1), (3) provides valuable test cases for assessing the performance of nu-
merical methods for system (1).
System (1) is derived by averaging the incompressible Navier–Stokes equations with free

surface in a vertical direction. This averaging is done under the assumption that the vertical
component of acceleration is negligible. Therefore, formally one is not allowed to take discon-
tinuous initial data (3) for system (1). Indeed, depending on the jump in bottom topography
zR − zL, one can get a large vertical component of acceleration. However, for the numerical
solution to (1) one needs to discretize it, and therefore one is forced to consider the Riemann
problem (1), (3) at each cell interface.
One of the main di�culties concerning system (1) is the fact that it cannot be written

in divergence form, i.e. it is non-conservative. As a consequence, one cannot de�ne a weak
solution how it is done in the theory of conservation laws, see e.g. Reference [2]. Also, there is
no analogue of the Lax–Wendro� theorem for system (1), i.e. a convergent numerical solution
to (1) will not necessarily be the correct one. Therefore, there is no fundamental guideline how
to construct numerical schemes for system (1), analogous to the conservation requirement for
conservation laws. In this light one strives to ensure several desirable properties of a numerical
method. These properties include the ability of the method to solve the steady-state solutions
to (1) exactly, to be positively conservative with respect to the water height h, and be able
to handle dry states h=0. Some other properties can be found in e.g. Reference [3].
Typically, the quality of numerical schemes for the shallow water equations (1) is assessed

on either steady-state solutions of (1), or on the problems (1) with constant bottom topography,
see e.g. References [4–6]. The main goal of this work is to test the performance of di�erent
numerical methods for system (1) on the exact (unsteady) solutions to the Riemann problem
(1), (3). In case of conservation laws, such assessment is a valuable criterion for designing
e�cient numerical methods, see e.g. Reference [7].
We use two methods for obtaining the exact solutions to the Riemann problem (1), (3),

the so-called inverse solution, and an exact Riemann solver. The �rst method consists of pre-
scribing the exact solution to the Riemann problem and determining the initial data, which
correspond to this solution. This procedure is implemented in CONSTRUCT [8]. An ad-
vantage of this method is that we can easily obtain a wave con�guration we are interested
in, e.g. with coinciding waves, almost dry states, etc. Alternatively, one can use an exact
solver for the Riemann problem (1), (3). In this work, we use the exact Riemann solver of
Chinnayya et al. [9].
It appears that the solution to the Riemann problem (1), (3) is in general non-unique. It is

not clear which of the non-unique solutions will be picked out by the numerical solution and
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if the numerical solution will converge towards this exact solution as the mesh is re�ned. In
Section 4 we show that for the same Riemann initial data (3), certain methods can pick out
di�erent exact solutions. We also provide some ideas how one can distinguish the ‘correct
physical’ solution.
The paper is organized as follows. In Section 2 we discuss several properties of the sys-

tem of shallow water equations (1) and of the associated Riemann solution. In Section 3
we describe the procedure of obtaining exact solutions to the Riemann problem (1), (3).
Section 4 contains the results of several numerical schemes, proposed for system (1). We
consider the hydrostatic reconstruction method of Audusse et al. [4], the relaxation method of
Bouchut [3], the VFRoe method of Gallou�et et al. [5], and the kinetic method of Perthame
and Simeoni [6]. We end up with conclusions in Section 5.

2. PROPERTIES OF THE RIEMANN SOLUTION

In order to provide the characteristic analysis of system (1), we rewrite it as follows:

ut +A(u)ux=0 (4)

where

A=



0 0 0

0 0 1

gh gh− u2 2u


 (5)

The eigenvalues of A(u) are

�0 = 0; �1 = u−
√
gh; �2 = u+

√
gh (6)

One can easily show that when �1;2 = �0 = 0, i.e. u∓
√
gh=0, the corresponding eigenvectors

become linearly dependent. Therefore, system (1) is hyperbolic away from the critical points
in the �ow with u∓√

gh=0, where it becomes parabolic degenerate.
In the solution to the Riemann problem (1), (3), each characteristic �eld associated with (6)

can either be a shock, a rarefaction, or a contact wave, see e.g. Reference [2]. The stationary
0-contact wave plays a special role in the solution to the Riemann problem (1), (3). Indeed,
the non-conservative term h(u)zx acts only across this wave. The Riemann invariants for the
0-wave are

hu= const

u2

2
+ g(h+ z) = const

(7)

Note that these relations are exactly the time-independent solutions of the shallow water
equations (1).
Classically, each characteristic �eld determines a corresponding wave in the solution to the

Riemann problem, separating the constant states, see e.g. Reference [2]. However, one can
point out the initial data (3) for which the solution to the Riemann problem with classical
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waves only does not exist. In order to get existence for such initial data, one has to use
certain composite waves, see References [9–11] for details.
System (1) belongs to the class of resonant systems, introduced by Isaacson and

Temple [12, 13]. The Riemann problem for such systems was studied e.g. in References
[10, 11, 14]. Analogous to the analysis of References [10, 11, 14] one can show that the so-
lution to the Riemann problem (1), (3) is not unique. In Section 4 below we provide an
example of the Riemann problem with the non-unique solution.
The choice of the physically relevant solution can be motivated by the comparison with the

2D or 3D incompressible free-surface code, analogously to how it is done in Reference [14].
One can consider the 2D or 3D initial data, corresponding to the 1D data, which produce
non-unique solutions to the Riemann problem, and compare the 1D non-unique results with
2D or 3D averaged solution. This work is currently in progress.

3. EXACT SOLUTION TO THE RIEMANN PROBLEM

In this paper, we use the exact solutions to the Riemann problem (1), (3) in order to provide
test cases for numerical methods for the shallow water equations (1). In these test cases,
one is typically interested in particular �ow con�gurations, which may be di�cult to solve
numerically. The common requirements to a numerical method for (1) are its ability to solve
the steady-state solutions (7) exactly, and to handle the dry states h=0. Since system (1) is
non-strictly hyperbolic, and the solution to the Riemann problem (1), (3) can be non-unique,
one wishes to assess the performance of numerical methods in these cases, too.
An easy way to obtain a Riemann solution with certain properties is to solve the so-called

inverse Riemann problem. It consists of prescribing the solution to the Riemann problem, and
�nding the corresponding initial data. This procedure is implemented in a software package
CONSTRUCT [8]. With its help, one can easily obtain a Riemann problem with desired
properties. Currently, CONSTRUCT handles only the Riemann solutions consisting of classical
waves. We have used the exact Riemann solver of Reference [9] to �nd the solution in
presence of composite waves.

4. NUMERICAL EXAMPLES

Here we present only the results on one test problem with a non-unique solution. More results
can be found in the report [15]. The initial data are

(z; h; u)=

{
(1.5; 1.3;−2); x6x0

(1.1; 0.1;−2); x¿x0
(8)

with x∈ [0; 1] and x0 = 0.5. One can check that the Riemann problem (1), (8) with the grav-
itational constant g=2 has two solutions. A judgement which of these solutions is physical
can be done by comparison with averaged 2D or 3D incompressible Navier–Stokes equations
with free surface in spirit of Reference [14].
Below we assess the performance of several numerical methods for the shallow water

equations (1) on this test case. For simplicity, we consider the �rst-order methods. The results
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Figure 1. The results of the relaxation method [3] for the test (8).
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Figure 2. The results of the relaxation method with hydrostatic reconstruction [5] for the test (8).

were obtained on 300 mesh points with a CFL number of 0.9. In Figures 1 and 2, the numerical
results are marked with dots, and the two non-unique exact solutions with solid and dashed
lines.
Hydrostatic reconstruction method. In the hydrostatic reconstruction method [4], the �rst

step is to compute the numerical �ux of some scheme for the homogeneous shallow water
equations (1), i.e. without the non-conservative term h(u)zx. To this end, we use the VFRoe
[5], relaxation [3], and kinetic [6] numerical �uxes. Then, the numerical �ux is modi�ed in a
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way that the rest steady states of (1), i.e. relations (7) with u=0, are preserved on discrete
level.
Relaxation solver. In the framework of the relaxation method [3], the system of shallow

water equations is replaced by a modi�cation of Suliciu’s relaxation system (see e.g. Reference
[16]).
The remarkable di�erence between the relaxation method and relaxation method with hy-

drostatic reconstruction [4] is that they pick out di�erent exact solutions for the non-unique
test (8), cf. Figures 1 and 2. Also, observe a gap between the chosen exact solution and the
numerical one, which does not disappear as the mesh is re�ned. This means that the numerical
solution does not converge to the exact one. The reason for such behaviour is the lack of the
analogue of the Lax–Wendro� theorem for the non-conservative system (1).
VFRoe method. The VFRoe method [5] uses an approximate solution to the Riemann

problem (1), (3). One can CONSTRUCT [8] a test case such that the VFRoe method produces
negative water heights, see Reference [15] for an example. Sometimes one can cure this
problem by diminishing the CFL number. Generally, the results of VFRoe are more oscillatory
as that of the relaxation method. As for the relaxation method, the numerical solution of
VFRoe with and without the hydrostatic reconstruction [4] picks out di�erent exact solutions
to the Riemann problem (1), (8).
Kinetic solver. In the kinetic approach [6] one solves a kinetic equation for the particle

density, constructed in such a way that the moments of this equation are exactly the shallow
water equations (1). The numerical results are similar to those of the relaxation solver [3].
Again, we use the kinetic method and the kinetic method with hydrostatic reconstruction [4]
picks out di�erent numerical solutions for the non-unique test (8).

5. CONCLUSIONS

Exact solutions to the Riemann problem for the shallow water equations provide valuable test
cases for numerical methods. It appears that the solution to the Riemann problem is in general
non-unique and it is not clear which exact solution will be picked out by a numerical one.
We show that several numerical methods for shallow water equations can apparently pick out
di�erent exact solutions for the same initial data. Moreover, grid convergence studies show
that the numerical solutions do not necessarily converge towards an exact solution.
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